
Train Sim World
TARGET Profile for Thrustmaster Warthog
Introduction

This document explains how to use the included Thrustmaster TARGET script created for the HOTAS Warthog
Throttle intended to work with Train Sim World (TSW). The script only uses the Warthog Throttle. The
Warthog Joystick is not used, though adding mapping for the Joystick is easy if desired. The Warthog axes are
mapped as follows:

• The Friction Control axis controls the reverser
• The Right Throttle axis controls the engine throttle or throttle/brake lever depending on the engine

type.
• The Left Throttle axis controls the dynamic brake, automatic brake, and independent brake, depending

on the setting of the FLAPS switch. It is easy to use all three modes on one lever due to a memory
feature that remembers the position of each brake lever in TSW and makes sure you

• Supported engines:
o SD40-2, GP38-2, GP40-2
o GE AC4400CW
o British Rail Class 43 HST
o British Rail Class 166
o British Rail Class 66

• Support for the Amtrak ACS-64 will be provided once Northeast Corridor New York is released.
• Support for the DB BR 442 Talent 2 EMU is not planned at this time as I don’t have this DLC.

o Contact me and if you can provide notch patterns, I can provide support with your testing help.
• All engines supported in a single script with quick profile changes using a button combination.
• Logitech/Saitek Throttle Quadrant profiles are also included to complement the Warthog by controlling

the independent brake and automatic brake separately, allowing the Warthog Left axis to control the
dynamic brake alone if desired. It is possible, however, to use just the Warthog Throttle to control all
the engine levers. Use of these profiles is optional.

• TrackIR support is also offered using a FreePIE script. Use of this script is optional.

The TARGET script has several files included which are explained in the installation section. It is not necessary
to understand how to program TARGET scripts to use this, but it will help a great deal if customizing the script
is desired. This script is also a good example for showing what can be done with TARGET using more advanced
techniques.

Installation

Installation is a manual process. Here is a list of the included files.

• TARGET Script files
The Thrustmaster Warthog Throttle Script files. Drakoz_TrainSimWorld.ttm and
Drakoz_TrainSimWorld_Warthog.tmc

• Train Simi World – TARGET Script Doc.pdf
The document you are reading now.

• TrainSimWorld_Generic_Warthog Controller Layout.xlsx
Excel file that shows the layout of all controls mapped in the TARGET script file. Also includes
mapping for the Saitek Throttle Quadrant if you use those profiles.

• wBeep files
The wBeep.exe program used in the TARGET script – for audible feedback when using the
script.

• Logitech-Saitek Throttle Quadrant Profiles
Profiles for the Logitech/Saitek Pro Flight Throttle Quadrant and Pro Flight Yoke (which has a
Throttle Quadrant). It is optional if you want to use these.

• TrackIR Support using FreePIE
A FreePIE python script and instructions to use FreePIE to get TrackIR support in TSW. See the
README file for details on how to install it and use it. It is optional if you want to use this.

To install the TARGET script…

• Copy the Drakoz_TrainSimWorld.ttm and Drakoz_TrainSimWorld_Warthog.tmc files from “Target
Script files” to where you normally store your TARGET script files. By default, this should be:

c:\users\<your username>\AppData\Roaming\Thrustmaster\TARGET\Scripts
The AppData folder is normally hidden. You can access it easily by hitting the Windows key and typing
%appdata% <enter> (for Windows 7, 8, 10) and it will open the Appdata folder. Or it is OK to save the
files anywhere as long as the TARGET Script editor can brose to them (see below).

• Copy wBeep.exe to C:\bin\wbeep.exe. You will likely have to create the C:\bin folder.
o If you don’t want to use or install wBeep.exe, see the How to Disable wBeep.exe and the Beep()

Function section below.
• If you want to use the Logitech/Saitek profiles, see the README file in that directory for where to copy

them. You only need one file or the other (the Pro Flight Yoke or Pro Flight Quadrant files) as each
profile does the same thing. These profiles are easily modified through the Logitech Profile software.

To run the TARGET script…

• Make sure your Thrustmaster HOTAS Warthog Throttle is plugged in. The Warthog Joystick is not
needed, but it does not hurt to have it plugged in. The same is true for any other Thrustmaster
TARGET compatible controllers. This script will ignore them.

• Run the TARGET Script Editor (not the TARGET GUI).
• Select the TOOLS tab.
• Make sure FILE PATHS in TARGET points to where you copied the .tmc and .ttm files. If you copied the

script files to a non-standard place, this is where you need to tell TARGET where they are.
o Click on Options

o Select “FILE PATHS” tab
o Make sure the Drakoz_TrainSimWorld.ttm and Drakoz_TrainSimWorld_Warthog.tmc files are in

a folder that is in the list of INCLUDE FILE LOCATIONS.
• Load the Drakoz_TrainSimWorld_Warthog.tmc file.

o Click on MENU
o Click on OPEN
o Find the file “Drakoz_TrainSimWorld_Warthog.tmc” and open it.
o The .ttm file will be loaded automatically for you when you run the script.

• Compile and run the script by clicking “RUN”.
• If all was installed correctly, it should compile with no errors, and you should hear a beep. The beep is

part of the script using the wBeep.exe program. If you do not hear a beep, recheck that you have
copied wBeep.exe to C:\bin (the script will not run without wBeep.exe unless you have disabled it) or
check your audio settings. The beep sounds are part of the Windows “System Sounds” volume in the
Windows Volume Mixer. Make sure the System Sounds volume is high enough (this should be true by
default).

• If it fails to run for some other reason, it is probably a TARGET Script Editor setup thing, or you forgot
to plug in your Warthog. Check the error log in the TARGET Script Editor, resolve the problem and try
again. If all else fails, ask for help in the forum where you downloaded this.

• The script is now running and ready to be used in TSW. Please see the section “Using the TARGET Script
below before continuing.

Once running, be careful about moving the axes on your Warthog Throttle when Train Sim World or the
TARGET Script Editor are not the selected application as it will send lots of keystrokes to the computer with
unintended consequences. To see what I mean, open up Notepad and move the axis back and forth. You’ll see
a spew of characters show up on the screen.

To Install the Logitech Profiles (optional)

• See the README file in the Logitech-Saitek Throttle Quadrant Profiles folder.
• These profiles are only needed if you have and plan to use a Logitech Throttle Quadrant or the Throttle

Quadrant that came with a Pro Flight Yoke. They are functionally the same, so I created a version of
the profile for each as I have both. I only use one or the other, not both at the same time.

Using the TARGET Script – Basic Usage

• Run the TARGET Script.
• Select the desired engine profile - press and hold MSP and then press LDGH several times and it will

cycle through the profiles.
• Load Train Sim World and select a scenario or service.
• Before entering the scenario, set the axes and switches on the Warthog to match the current state of

the engine.
• See the included Excel file for button and axes configuration.

Please see below for detailed usage instructions.

Function Reference – TrainSimWorld_Generic_Warthog Controller Layout.xlsx

Open the TrainSimWorld_Generic_Warthog Controller Layout.xlsx file which has a layout of the controller and
how the buttons, switches, and axes are mapped. Here are some notes on how to read this file.

• Each button and axis on the Throttle is listed in the gray boxes.
• Black text lists the primary function of a button (e.g. push the APENG button and it blows the horn).
• Red text is a shifted function controlled by the Thrustmaster IO shift button. The shift button is MSP

(Mic Switch Hat center button). E.g. press MSP and the LDGH button, and it will change to the next
engine profile (more on engine profiles below).

• Orange text is a Press and Hold function. E.g. Press and hold the Mic Switch HAT forward, and it will
switch to Free View (view 8 in TSW).

• Blue text indicates mode based functions that change based on the position of the Flaps Switch. This
is the Thrustmaster UMD mode switch.

• Light Blue text is setup notes or additional functional notes related to the sim.
• The file also includes mapping information for the Saitek Throttle Quadrant and the Logitech G700S

mouse which I use. You can ignore the G700S settings as that is not part of this collection of files.

Changing the Engine Profile

To change profiles, press and hold the MSP button (you will hear a “bip” sound to confirm it was pressed).
Then press the LDGH button. Each press of the LDGH button will change to the next profile. After reaching
the last profile, it will switch back to the first profile. Text in the TARGET Script Editor window will identify
which profile has been selected. The LEDs on the Warthog Throttle will display a binary number indicating the
current profile number. Also, an increasing pitch sound will be heard with each selected profile. With the
pitch sounds, or LEDs you can identify which profile you have switched to without leaving or alt-tabbing out of
TSW.

The Profiles are (in order of selection):

Text in TARGET Window Engines Supported LED Pattern 1
Profile 1: pro_SD40GP38 EMD SD40-2, GP38-2, GP40-2 LED 00001 = 1
Profile 2: pro_AC4400CW GE AC4400CW LED 00010 = 2
Profile 3: pro_BR43 British Rail Class 43 HST LED 00011 = 3
Profile 4: pro_BR166 British Rail Class 166 LED 00100 = 4
Profile 5: pro_BR66 British Rail Class 66 LED 00101 = 5
Profile 6: pro_DBBR422 2 DB BR 442 Talent 2 EMU LED 00110 = 6
Profile 7: pro_ACS64 2 Amtrak ACS-64 LED 00111 = 7

1 A 1 means the LED is lit, a 0 means it is dark.
2 Support for the Amtrak ACS-64 will be provided once Northeast Corridor New York is released. Support for
the DB BR 442 Talent 2 EMU is not planned at this time as I don’t have this DLC. Contact me and if you can
provide lever notch patterns and key press times, I am happy to provide support with your testing assistance.

Using the TARGET Script – Detailed Usage

Following is a detailed description of how to use the TARGET script to control various engines.

Warthog Axis out of Sync with In-Game Lever

Occasionally, a Warthog axes will get out of sync with the engine lever in TSW. Great effort has been taken to
avoid this, so it is possible to throw the Warthog axes back and forth quickly and have every axis movement
accurately translate to moving the lever in game. This is the big difference between using this script and
simply using key mapping features in other programming software like I did for the Logitech/Saitek profiles.
For example, it should be possible to throw an axis full forward to full backward several times, and though
there is a delay between moving the Warthog axes and the in game lever, the lever in game should eventually
follow your every movement.

But again, this is only an axis to keypress mapping script, and occasionally a keypress is missed by TSW. This
causes the Warthog axis to be out of sync with the sim. Sadly, it happens more often than I would like. I am
working on ways to make it better, but it is difficult to overcome. See the Technical Details section for further
explanation.

If you experience significant difficulties with the Warthog axes getting out of sync with the TSW levers, let me
know. There may be issues with how timing on one computer compares to another, and they have to be
adjusted for your computer.

When the Warthog axis and the in game lever get out of sync, either use the keyboard keys to move the in
game lever to match the Warthog, or press ESC to pause the game, and move the Warthog axis to match the
lever in game.

Lever Notch Feedback

The levers in TSW have notches for some lever positions. For example, the throttle lever on the SD40-2 has 9
notches, IDLE and 1 through 8, or the AC4400CW has a hump to overcome to move from throttle to dynamic
braking. Sadly, the Warthog Throttle does not have these physical notches to give feedback (I have a solution
for that using the afterburner notch piece, but it will be a while). Even the RailDriver product does not match
these notches perfectly for every engine.

Feedback as you move the in game levers is given with HUD messages and the HUD compass in the lower right
corner, but operating the engines with the HUD off, you lose this feedback. For some levers, a click can be
heard in TSW that indicates lever movement. This is not consistent with all engines. Hence, the TARGET script
uses various tones and beeps to indicate the most important notch points such as the hump or notch between
throttle and braking on the AC4400CW or Class 166 throttle/brake lever, or important positions on the
automatic brake lever such as Release, Handle Off and Emergency Brakes.

Because there are no physical notches on the Warthog, start out moving the Warthog axes slowly while
getting used to the various feedback (HUD, in game clicks, and the TARGET Script beeps). This will help
prevent over shooting the desired lever position in game.

Reverser (Warthog TFC Axis)

The Warthog Throttle Friction Control axis (TFC axis) is mapped to control the engine reverser lever for all
engines.

If the Warthog TFC axis gets out of sync with the engine’s reverser (which happens usually when starting a
new scenario without first setting the TFC to match the reverser in game or when changing engine profiles)
just move the TFC axis lever full forward, then full backward, then back to center, and the TFC axis will be in
sync with TSW again.

For engines like the Class 43 HST and Class 166, there is an Engine Off position. The TFC axis is programmed to
reach this position only in the last 2% of axis travel. Moving the TFC only 10% forward or 10% backward from
center, however, will select forward and reverse. This should avoid accidentally moving to the Engine Off
position.

Throttle Lever (Warthog Right Axis)

This applies to engines like the SD/GP engines, Class 43 HST, and Class 66. These engines use a dedicated
throttle lever which has an IDLE position and several notched power positions (e.g. 1 through 8). For these
engines the Warthog Right axis maps directly to the throttle lever on the engine.

 Combined Throttle & Brake Lever

This applies to engines like the AC4400CW and Class 166. These engines have a combined throttle and brake
lever with several notched throttle positions, a notch or hump in the middle, and several notched brake
positions (e.g. Class 166), or a continuous (non-notched) brake zone (e.g. AC4400CW). The Warthog Right axis
maps directly to the throttle/brake lever on these engines.

When using these engines, it is best to move the Right axis slowly so as to not overshoot the center detent or
hump between throttle and braking. This is especially important for the AC4400CW as the center hump
between throttle and braking requires a 1 second key press to overcome the hump. Hence it is easy to get
confused as to where the Warthog lever is vs. the lever in TSW. There is some delay between moving the
Warthog Right axis and the lever movement in the sim making it easy to get out of sync or overshoot the
desired position. For the AC4400CW, extra beeps were used to help identify the movement over this hump. It
is a good idea to practice moving back and forth over the hump to get used to the feel and the beeps.

Be aware that if the reverser on the AC4400CW is in neutral, TSW will not allow the throttle/brake lever to
move into the braking region. Of course, the Warthog axis has no such limitation which gets things out of sync
immediately.

Dynamic/Automatic/Independent Brake Lever Selection using the FLAPS Switch (Warthog Left Axis)

There are three types of brake levers in TSW, the dynamic brake, automatic brake, and independent brake.
Not all engines have all three levers, and some engines combine one or more of these brake functions with the
throttle lever (e.g. AC4400CW and Class 166). All three brake levers are controlled by the Warthog Throttle
Left axis. You select which brake lever you want to control with the position of the FLAPS switch.

The Warthog Left axis is mapped as follows:

FLAPS Switch Position Left Axis Controls
FLAPU (forward position) Dynamic Brakes
FLAPM (middle position) Automatic Brakes
FLAPD (backward position) Independent Brakes

For engines that only have a single brake lever (e.g. Class 43 HST), the position of the FLAPS switch does not
matter. For other engines, only those positions that match the engine are functional.

The TARGET script remembers the position of all three in game brake levers so when switching from one to
another, the script will prevent the Left axis from moving the in game lever until it has been moved back to the
previous position of the selected lever.

For example, in a GP38-2 going down a hill with the automatic and independent brakes set to release, and the
dynamic brake set to position 7, say you are still gaining speed, but can’t increase the dynamic brake more due
to a brake warning (over current) light. Adding a little automatic braking will slow things down. To do this with
the Warthog Left axis, flip the Flaps switch to FLAPM to select the automatic brakes and pull the Left axis all
the way back. You will hear a beep indicating that the Left Axis is now in sync with the automatic brake lever in
game. Apply a little automatic braking to slow down, then move the automatic brake lever back to release.
Flip the Flaps switch back to FLAPU to select dynamic brakes and move the Left axis forward a little. Notice

the dynamic brake lever in game does not move. Keep pushing the lever forward until you hear a beep. Now
the Left axis is in sync with the in game dynamic brake lever, and lever movement is enabled again.

For those that want separate lever controls, that is why the Logitech/Saitek Throttle Quadrant profiles were
provided. They allow controlling the automatic (left lever) and independent (middle lever) brakes. When using
the Throttle Quadrant, set the Warthog FLAPS switch to FLAPU to control the dynamic brake with the Warthog
Left axis. I did not set up the Throttle Quadrant right lever to control the dynamic brakes because I always use
the Warthog for dynamic brakes regardless. Or for the AC4400CW, I use the Warthog Left axis to control the
automatic brakes, and the Saitek Throttle Quadrant only to control the independent brake.

Here are some specifics about each brake setting.

Dynamic Brake

This applies to engines like the SD40-2, GP38-2 and GP40-2. These engines use a dedicated dynamic brake
lever which has OFF and SETUP notched positions and an un-notched continuous region (e.g. marked 1
through 8). When FLAPU is selected, the Warthog Left axis maps directly to the dynamic brake lever in game.

Automatic Brake

Almost all the engines in TSW have an automatic brake, or a brake that is mapped to work with the automatic
brake keys in TSW (; and ‘). The automatic brake usually has several notched positions (e.g. Release, Initial
Reduction, Suppression, Handle Off, and Emergency) as well as a continuous non-notched region between
Initial Reduction and Suppression. When FLAPM is selected the Warthog Left axis maps directly to the
automatic brake lever in game.

For the Class 66 locomotive, the automatic brake is a three position lever with Release, Hold, and Apply. The
lever is spring loaded to default to the Hold position. The Warthog Left axis maps so that the lower 20% range
is the Release setting, the 20-40% range is the Hold setting, and 40%-100% is the Apply setting. Of course, the
Warthog is not spring loaded, so don’t forget to move the Left axis back to the Hold position.

For the Class 166 engine, the brake lever is just a simple notched lever. The Warthog Left axis maps directly to
this lever in game and is chosen regardless of the Flaps switch position.

Independent Brake

Most engines have an independent brake. When FLAPD is selected the Warthog Left axis maps directly to the
independent brake lever in game.

To actuate Bail Off, with the Warthog Left axis pulled all the way back, lift the Left axis up and pull back to the
Engine OFF position (called IDLELOFF). As long as the axis is in IDLELOFF, the independent brake will be held in
Bail Off. Push the Left axis forward to IDLE and Bail Off is released.

For the Class 66 locomotive, the independent brake is a three position lever with Release, Hold, and Apply.
The Warthog Left axis maps so that the lower 20% range is the Release setting, the 20-40% range is the Hold
setting, and 40%-100% is the Apply setting.

Views – Mic Switch

The Mic Switch is mapped to control TSW views and enable/disable HUD elements. See the Excel file for all
mappings. Here are a few notes on the Mic Switch.

• MSR – In Cab View – TSW 1 key
• MSR Press and Hold – Free View – TSW 8 key
• MSL – Exterior View – TSW 3 key
• MSL Press and Hold – Boom View – TSW 2 key
• MSD – Toggle HUD Markers toggles the 3 icon markers that show next way point, next speed zone, and

next signal.
• MSD Press and Hold – HUD Toggle turns all HUD elements on or off (TSW CTRL-1, CTRL-2, CTRL-3)
• MSU – 2D Map View – TSW 9 key
• MSU Press and Hold – Score Toggle (CTRL-6) toggles display of the Score HUD element, but because of

what I believe is a bug in TSW, it also toggles the next signal and next speed zone HUD elements.
These elements have their own toggle key (CTRL-4) but using them seems to have problems with them
not working (a bug). So I just use Score Toggle.

Using the Mic Switch for views, the Coolie Switch as the arrow keys (see below), and some mappings on my
Logitech G700S Mouse (see the Excel file) allows me to control most external views and First Person activities
without touching the keyboard.

Arrow Keys – Coolie Switch

I normally have my left hand on the Warthog Throttle and right hand on the mouse. I mapped the following
Warthog buttons so I don’t have to use the keyboard arrow keys to move around. I can quickly switch views
using the Mic Switch, and then fly around.

The keyboard arrow keys are mapped to the Coolie HAT switch. This controls the UP, DOWN, LEFT, and RIGHT
arrow keys for switching views in the cab or moving around in external views.

MSP + the Left or Right Coolie buttons (CSL and CSR), does a CTRL-LEFT ARROW or CTRL-RIGHT ARROW which
is used in external views.

The Slew Control center button (SC) maps to the keyboard SHIFT key. When SHIFT is held with an arrow key,
you move faster in external views. This also works with First Person walk around mode.

Headlight Switches

TSW has a forward headlight switch (keyboard hot key h and SHIFT-h) and a backward headlight switch
(keyboard hot key CTRL-h and SHIFT-CTRL-h). These switches work differently for different engines. The
Warthog Engine Operate Switches are mapped to control these switches. See the Excel cheat sheet for
details. Try them to understand what they are doing. One press or toggle of the switch forward or backward
will move the respective headlight switch forward or backward one position.

Wiper Switch

The wipers work differently for different engines.

For the GP/SD engines, press and hold v, and the wipers are turned on or increase in speed. Press and hold
SHIFT-v and the wipers are decreased in speed or turned off. The TARGET script maps this to a single toggle
switch on the Warthog, the Engine Flow R toggle switch (EFRNORM and EFROVER). It is programmed to simply
turn the wipers on or off. For example, on the SD/GP engines, it defaults to 50% wiper speed.

For the Class 43 HST, the wiper switch has 4 positions. The Warthog switch, again, simply turns the wipers on,
or off. But it will move the Class 43 wiper switch from ON to OFF to PARK, wait a moment to park the wipers,
and then back to OFF.

Other Switches and Buttons

All other switches and functions in TSW should be easy to figure out. See the Excel cheat sheet for details. If
you want to change the mapping of some switches and buttons, see the Technical Details section below for a
few important things to be aware of before modifying the TARGET Script.

How to Disable wBeep.exe and the Beep() Function

If you don’t want to use wBeep.exe or get audible feedback from the scripts, make the following change. This
variable is found near the top of the Drakoz_TrainSimWorld_Warthog.tmc file. When disabled, it is not
necessary to copy wBeep.exe to C:\bin on your computer. I strongly recommend trying the beeps first before
deciding to disable it. Because there are no detents on the Thrustmaster Throttle Left and Right axis, the
beeps are a solution to give feedback. To understand more about wBeep.exe and what it is doing, see the
section titled Beep() Function – Calling wBeep.exe in the Technical Details section.

Default setting – this enables beeps:

// Disable Beep() output - disabled =0, enabled =1
define BeepEnabled 1

To disable beeps, make the following change:

// Disable Beep() output - disabled =0, enabled =1
define BeepEnabled 0

Using the Logitech/Saitek Throttle Quadrant Profiles

Refer to the Excel spreadsheet to see the mapping for the Saitek Throttle Quadrants. Although you can
control all the brake levers with the Warthog Left axis, it is much nicer to have a Throttle Quadrant set up so
you have three separate levers to control the brakes.

The Saitek left and middle (X and Y) axes were configured to use Directional Axis mode. This mode is very
simple. Move the lever up and it presses one key. Move the lever down and it presses another key. The right
(Z) axis is not used.

When moving the Throttle Quadrant levers, move them slowly. Unlike the Warthog that guarantees that
every key press will be sent to TSW, which keeps things in sync and gives great precision, the Saitek

programming software will skip keypresses if you move the lever too quickly and fall short when you reach the
end of travel. It works OK for the automatic brake and independent brake, but this way of doing keypresses
simply does not work for the throttle or throttle/brake lever in TSW.

The Throttle Quadrant, however, has a nice feature missing on the Warthog – the Reverser position at the
bottom of the lever throw. The Warthog has a similar position, but the Throttle Quadrant’s position has a
physical notch you have to overcome to use it which makes it perfect for the automatic and independent
brakes.

Automatic Brake using the Saitek Throttle Quadrant

The Throttle Quadrant’s left lever is mapped to move the engine’s automatic brake lever, but it uses only short
keypresses. It is not intended to overcome the notched areas that require long presses. Instead, the T1 and
T2 buttons perform a long press to get past any notches.

When the Left lever is pulled back to the Saitek’s Reverser position, it does two long presses which will move
the automatic brake from Service to Minimum Reduction to Release. Then when moved out of the Reverser
position, two long presses are made again, which moves from Release to Service.

To move to the Minimum Reduction, Handle Off, or Emergency positions, press the T1 or T2 buttons as
needed to create the long presses.

Independent Brake using the Saitek Throttle Quadrant

The Throttle Quadrant’s middle lever is mapped to move the engine’s independent brake lever. It only does
short presses as long presses are not needed.

To actuate Bail Out, press the middle lever down into the Saitek’s Reverser position. To release Bail Out, pull
the lever out of the reverser position.

Technical Details

This section assumes you have some familiarity with TARGET scripting (not the TARGET GUI, but the TARGET
Scripting Editor). It also helps to understand C Programming at least a little. If you don’t have such experience,
don’t be afraid to dive in. That’s how you learn. But you’ll want to keep the TARGET Scripting Documentation
handy to understand things. TARGET is a C like language. It has a lot of power, but lacks a few basic features
of C. For the average TARGET Script user, however, Thrustmaster has simplified the language down to
relatively simple MapKey(), MapAxis() and KeyAxis() commands.

The information below was written before my final release of the script, so some details may not match the
actual script. Refer to my actual TARGET scripts to see exactly what I did. But the information below is still
correct from a learning perspective.

To follow along, open up the .tmc and .ttm TARGET scripts for Train Sim World in the TARGET Script. Or use a
program like Notepad++ and tell it that .tmc and .ttm files are C code to add proper coloring. Notepad++ is a
much better text editor than using the TARGET Script editor or Windows Notepad. You can edit the files in
Notepad++ and load them in the TARGET Script Editor at the same time. Make edits in Notepad++, save the
file, and press the RUN button in the TARGET Script Editor to compile and run file. It will always compile and
run the saved file even if the open file in TARGET doesn’t match anymore. Just never save the file in the
TARGET Script Editor. That will over write the saved copy from Notepad++.

Editing the TARGET Script to Change Button/Switch Assignments

If all you care about is changing a few of the button assignments, you only need to understand basic TARGET
Scripts functions like MapKey(), but also be aware of the following that is specific to my script.

A normal TARGET script has a main() section where the user implements their MapKey() statements, and the
EventHandle() routine that is just there and not meant to be touched. In the case of my script, the normal
MapKey() statements are implemented in a separate function called CommonConfig(). Any changes to key
mappings should be done there. CommonConfig() is called by the pro_CallCustomConfigs() function which is
called at the bottom of main(). So it is really the same as if it was in main().

To implement key mappings specific to one engine, add those changes to the engine specific
pro_Configure<engine_name>() function. For example, for the SD40-2, GP38-2, and GP40-2 engines, add
custom key mapping in the pro_ConfigureSD40GP38() function. The engine specific functions are called as you
cycle through the profiles.

Any mapping in the engine specific functions will override any previous mapping. For example, EACON is
mapped to blow the horn for all engines in the CommonConfig() function. If you want to change EACON to
turn on the cab lights only for one particular engine, add a MapKey() function to the engine specific function
and it will replace the mapping to blow the horn only for that engine, even though it was previously mapped in
CommonConfig(). When switching the profile back to another engine, EACON will go back to blowing the horn
as CommonConfig() is executed again every time an engine profile change occurs.

Changing the IO Shift and UMD Mode Buttons

The exception to all this is the MSP button must be mapped in main() and nowhere else because it is the
TARGET IO Shift button. If you want to use a different key for the IO Shift key, change both the following two
lines:

// IO Shift and UMD Setup (%DEV1, I button, $DEV, U, D, Toggle settings)
SetShiftButton(&Throttle, MSP, &Throttle, FLAPU, FLAPD, 0);

and

// MSP is the IO Shift Key. Only map it here. Do no map in custom profiles or CommonConfig)()
// Doing so will break rotating through profiles.
// Makes a bip sound when pressing MSP
MapKey(&Throttle, MSP, EXEC("Beep(8000,30);"));

To change the UMD Mode Switch, modify the SetShiftButton() function shown above, but also make sure to
update the following MapKey() functions (found in CommonConfig()) to point to your new chosen mode
buttons (e.g. replace FLAPU, FLAPM, and FLAPD with your chosen switch positions):

// Flaps Switch
// UMD Switch - also used to select function of Warthog Left Throttle Axis with
KeyAxisDirectional()
MapKeyIO(&Throttle, FLAPU, 0, EXEC("SwitchUMD(SWITCHFORWARD);"));
MapKeyIO(&Throttle, FLAPM, 0, EXEC("SwitchUMD(SWITCHMIDDLE);"));
MapKeyIO(&Throttle, FLAPD, 0, EXEC("SwitchUMD(SWITCHBACK);"));

The above EXEC() statements call the function SwitchUMD() which important for allowing Left axis to control
different engine levers and keep them in sync when switching modes.

Long Keypresses required by TSW

Many of the keyboard keys used to control TSW require a longer than average press, and the length of that
press is different for different locomotives. For example, controlling the headlight switch (h) requires a 200-
300 ms key press for some engines and a 300-400 ms keypress for other engines.

Normally, in TARGET scripts, you map a key with MapKey() as follows:

MapKey(&Throttle, LTB, ‘h’);

When the LTB button is pressed, the h key will be pressed and held as long as you press and hold the LTB
button. Often, the PULSE+ modifier is used as follows:

MapKey(&Throttle, LTB, PULSE+’h’);

When LTB is pressed, no matter how long you press and hold LTB, the h key is pressed only for a moment. It is
pulsed for a period of milliseconds defined by the default time for a PULSE. This is set by the SetKBRate()
function, or 25ms, which I believe is the default if there is no SetKBRate() function.

The first method above works for TSW but is sometimes inconvenient as you must always remember to press
and hold the button long enough to have the desired result. Some functions in TSW require such a long press

that I often “missed’ getting the button or lever to move because I didn’t press the button long enough. So, I
tend to program using the PULSE+ modifier. The problem with the PULSE+ modifier is there is only one
default delay for all PULSE+ key presses. But as pointed out, some keys require a 100 or 200 ms press, while
others require a 300 or 400 ms press.

The solution is to use a CHAIN as follows:

MapKey(&Throttle, LTB, CHAIN(LOCK+DOWN+'h', D(250), UP+'h', D(50), LOCK);

Using DOWN+ and UP+ in a chain command like this allows us to set a specific delay for each button. DOWN+
presses the h key down. UP+ releases the h key. The delay between pressing and releasing h is set by D(250) in
the middle which causes a 250ms delay. The LOCK+ modifier makes sure that the entire string of commands
in the CHAIN() are executed without interruption by additional presses of the LTB button. The LOCK at the end
unlocks it to allow other LTB presses to fire off a new pressing of the h key. The D(50) at the end is just to
make sure that if you do multiple presses of the button, there is a slight delay between them. This is because
when using LOCK, if you press the LTB button 10 times rapidly (faster than the D(250)), TARGET will queue up
all 10 presses of the button and spit them out one after the other. Without LOCK, they would be sent
coincidentally, which would cause chaos. But you also need TSW to register the button as being unpressed,
and a small delay between each button press is required for that. Hence the D(50).

So if you desire to modify the MapKey() functions to fit your tastes, keep the above in mind as you may have
to use the CHAIN(..DOWN+…UP+) version of a MapKey() to get the key to work correctly.

Changing the Lever Mapping and KeyPress Delays for Each Engine

This topic is too big to explain in detail, but I’ll make a “few” comments and then direct the reader to follow
the existing script as an example.

Engine Brake and Lever controls are mapped using the CallKeyAxisDirectional() function. This function simply
calls KeyAxisDirectional() with the proper data tables specific to each engine. The data tables are configured
in the .ttm file.

CallKeyAxisDirectional() looks surprisingly similar to EventHandle(). That is because CalKeyAxisDirectional() is
called by EventHandle(). Every time a button is pressed, or a switch is flipped, or an axis moves on the
Warthog, the TARGET service calls EventHandle(). This is our backdoor to write custom code to take over.
When we are done, EventHandle() then calls DefaultMapping() to continue handling the event normally.

EventHandle() takes in three parameters, type, o, and x. Parameter o is the device (e.g. &Throttle).
Parameter x is the button or axis that made the event (e.g. MSP for the Mic center push button, or THR_RIGHT
for the Warthog Right Throttle axis). Parameter type is not used. In EventHandle(), CallKeyAxisDirectional() is
called with the same o and x parameters. CallKeyAxisDirectional() then determines which engine profile is
active, and which axis was moved, and sends the data to KeyAxisDirectional() which performs the actual key
presses to make the TSW engine levers move. So to be clear, KeyAxisDirectional() is really the main point of all
this. Everything else wrapped around it is just the fluff to make it work conveniently (customizable profiles,
profile switching, formatted tables that are easy to edit, etc.).

KeyAxisDirectional() performs the equivalent of an TARGET AXMAP1() and AXMAP2() function at the same
time. Similar to AXMAP1, KeyAxisDirectional() presses one key when an axis moves up, and another key when
the axis moves down. If LIST() is used with AXMAP1(), several zones of different size can be configured so the

key press occurs when crossing the oddly sized zones. Similar to AXMAP2(), KeyAxisDirectional() can press a
different key depending on what zone the axis is in. Hence KeyAxisDirectional() can send one set of keys
based on zones when moving up, and another set of keys based on zones when moving down. It is designed
to use the same zones for axis up and axis down. Though it wouldn’t be difficult to modify
KeyAxisDirectional() to allow different zones for axis up vs. axis down, such a feature is not needed for TSW.

For AXMAP1() and AXMAP2(), these zones are defined by LIST(), followed by a comma separated list of key
press events for each zone. For KeyAxisDirectional(), the zones and the key presses are defined by the tables
in the .ttm file, but it is the same basic concept.

Finally, the tables for KeyAxisDirectional() have a pair of columns to specify a frequency and duration for a
tone or beep so that beeps can be heard at specific zones to give feedback to the user.

Here is the definition of KeyAxisDirectional():

int KeyAxisDirectional(alias dev, int axis, alias zone, alias zonesList, alias actionUP, alias
actionDN)

An explanation of each parameter:

• dev – Device (e.g. &Throttle). dev is an alias for Throttle, Joystick, HCougar, etc. The variable is passed
into KeyAxisDirectional() using the “address of” notation &. Hence &Throttle means the address of
Throttle. Throttle is an array of int that contains all the current button and axis states for the Warthog
Throttle. For example, Throttle[MSP] equals the current state of the MSP button. The & notation is
used throughout TARGET scripts to pass global variables around and allow functions to edit those
variables without knowing what they are editing. Normally in C Programming this is done with pointer
notation (*), but TARGET does not support pointers. It only supports &.

• axis – This is the axis from dev (e.g. THR_RIGHT) that moved and must be processed by
KeyAxisDirectional().

• zone – This is an alias to the current zone for the axis. Zone is a number between 1 and the number of
zones defined by zoneList. If zone = 0, the axis hasn’t moved since we started the script (there is no
current zone yet).

• zonesList - alias to array of int listing zone boundaries by percent (e.g. {0,250,500,750,1000} = 0%, 25%,
50%, 750%, 100%). Whereas LIST() only supports whole numbers (e.g. 25%), KeyAxisDirectional()
supports fractions of a percent (e.g. 25.5%). But integers are used (e.g. 250) to avoid using floating
point math and keep things efficient in the middle of the EventHandle() routine. The number of zones
defined is 1 less than the number of elements in zonesList. E.g. zonesList = {0,250,500,750,1000} is 5
elements, but there are only 4 zones as the zones are between the numbers, not on the numbers. This
is the same as LIST().

• actionUP, actionDN - alias to an array of type “struct axisAction” which contains actions and beeps for
each zone. Each element of the array applies to a zone defined by zonesList and contains the data
action, delay, freq, and dur. The action value is the key to press (e.g. ‘h’), delay is how long to hold it
down in ms, freq and dur are the frequency (in Hz) and duration (in ms) of a beep for that zone.
actionUP is for increasing axis values (the axis moved up), actionDN for decreasing axis values (the axis
moved down). If action is 0, no action is performed (no key press). If delay is -1, it means press and
hold the action. If delay is 0, it means release the action (be careful with this – always make sure there
is a path to release the key!). If dur is 0, no beep is performed. The value of freq doesn’t matter if dur
is 0.

The parameters dev and axis are passed in directly from EventHandle(). The parameters zone, zonesList,
actionUP, and actionDN are defined on a per engine profile basis using the tables in the .ttm file.
CallAxisDirectional() figures out which engine profile is the current profile and which axis moved, and passes
all this to KeyAxisDirectional() which then performs key presses without having any knowledge of what profile
is current, or what axis just moved. It only cares about the current position of the axis (newzone) relative the
previous position of the axis (zone), determines if the axis crossed a zone barrier as determined by zonesList ,
and if so, which direction the axis moved. KeyAxisDirectional() then performs the appropriate actionUP or
acitonDN key presses (and beeps) to move the lever in TSW.

The parameter zone (which is called the previous zone) is modified by KeyAxisDirectional() to contain the new
zone (newzone) that the axis moved to (if it moved zones at all). All other parameters are not changed by
KeyAxisDirectional().

Looking at KeyAxisDirectional(), you’ll see that it does the following in this order:

• Determines what zone the axis is currently in (newzone).
• If the previous zone = 0, set zone = newzone and exit. There was no previous zone. First time through

the function for this axis/engine combo.
• If the zone didn’t change, exit.

o But first check UMDJoySynced[UMDMode] to see if the axis has now synced. If so, beep and
clear the UMDJoySynced[UMDMode] flag – enabling the axis to move the levers in TSW.

• If the zone changed, check UMDJoySynced[UMDMode] to see if the axis is not synced. If not synced,
exit – perform no action.

• Determine if Axis moved UP or Down and perform the actionUP or actionDN action
o Beep according to the action table
o Perform the action (key press)

• Set zone = newzone and exit

UMDJoySynced[] is an array of 3 elements, one for each mode of the UMD switch (e.g. FLAPU, FLAPM, FLAPD)
and hence one for each engine brake lever in TSW (dynamic, automatic, independent). When the UMD mode
switch is changed, all elements of UMDJoySynced[] are set to 0 indicating that all 3 brake levers are out of sync
with the Warthog Left axis. The next time the Left axis is moved, KeyAxisDirectional() determines if the axis is
in the current zone for the brake lever in TSW. If not, then KeyAxisDirectional() ignores the axis movement
and exits. If true, then UMDJoySynced[UMDMode] is set to 1 and axis movement is now allowed to move the
engine brake lever in TSW. UMDMode is simply the current brake mode as determined by the Flaps switch.

Sometimes it is possible to move the Warthog Left axis faster than the script can keep up. You really have to
throw the Warthog lever fast to do this, or it happens due to a Windows interruption. KeyAxisDirectional()
figures this out and makes sure that the proper action is performed for every zone that was crossed. No
actions or key presses are missed due to moving the Warthog too quickly. This is one of the key problems
using the common key mapping software for other game controllers. The Saitek Throttle Quadrant is nice to
have, but if you move the lever too fast, the Saitek software starts missing zones and sends too few key
presses, causing the Saitek lever to get out of sync with TSW. Or it will mash the key presses together and send
them at the same time - chaos. This TARGET script prevents that.

Again, it isn’t perfect. There are still incidents where TSW seems to miss a key press. This is related to the
time delay for each key press. TARGET is very good at guaranteeing the D() delays within the bounds that

Windows allows. But the TARGET service cannot make it perfect, resulting in some key presses being too
short and TSW fails to register them.

There is a range of delay with TSW where too short, and the key doesn’t register, too long and the key will
register twice and move a lever two steps. For example, for the a key to increase the throttle, for some
engines the delay is between 60 and 210 ms. I will choose a delay on the high end of that spectrum (e.g. 170)
in the hopes that if an interruption occurs, it will still meet the 60 ms window. But choose too close to the 210
ms value, and TSW might interpret the key press as a long key press and move the throttle two steps. The
entire reason I had to write all this scripting was to overcome this issue. It is variable from one lever/button to
the next and even from one engine to the next for the same lever/button control. Why Dovetail did it this way
is beyond me. No other simulator/game I mess with has this problem. But it is nothing new. Trains Simulator
20xx has the same issue. Which means that this TARGET script could be updated to work with Train Simulator
also, but there is already a good mod for Train Simulator to handle all this far more elegantly and for all game
controllers, not just Thrustmaster. The point is, this TARGET script is capable of doing this for any train
simulator (RUN 8, TS 20xx, etc.) using the same techniques.

There is a lot more that could be said about the tables in the .ttm file and why they were done the way they
were done. There is no great insight I can depart here. It was just hours of time spent figuring out the
required key delays for each lever on each engine and finding the right combination of number of zones and
keypress delays to get the result I wanted. Now that the groundwork is done, it is very easy to add new
engines as they come out.

Engine Profiles and Too Many Engines

Right now, there are only a few engine profiles, so cycling through them with a button press, beeps, and LEDs
for feedback is OK. But as more engines are released by Dovetail Games, it will be ridiculous pressing the
LDGH button a couple dozen times to get to your engine. And who really wants to read binary code on an LED
display (well, actually, if you read this far, you are probably someone that doesn’t mind binary). Anyway, this
will be addressed in the future either by splitting up the script into multiple scripts based on engine type and
having to run each script manually in TARGET, or by asking for user input through the TARGET Script output
window, which I believe is possible.

The real issue is, I don’t plan to buy every DLC for TSW, but I can help define the engine tables in the .ttm file
with input from other users. That is really the reason I took the time to write this document – so that people
can help define the engine profile tables for DLC that I don’t own.

Beep() Function – Calling wBeep.exe

Beep() is a function that simply calls wBeep.exe using the system() command. Here is the coding for Beep():

//**
// Beep()
// Beep function - calls wbeep.exe which must be located at the path below.
int Beep(int freq, int duration) // Beep(frequency, duration in ms)
{
 char buffer;Dim(&buffer, 64);
 sprintf (&buffer, "spawn c:\\bin\\wbeep.exe %d %d", freq, duration);
 system(&buffer);
}

The sprintf() function “builds” the command to be sent to the Windows command prompt to call wBeep.exe.
The command it executes is:

spawn c:\bin\wbeep.exe %d %d

Where the %d %d is the frequency and duration of the beep, and spawn is just a command to run the program
as its own process. To use the system() function correctly with a Windows command prompt pathname, it is
required to escape the \ with a \\. If the location for wBeep.exe is changed, the path should be modified in
the Beep() function, remembering the \\ in place of \.

See the readme file in the “wBeep files” directory for more details including the source code of the wBeep.exe
program and how to make and compile it yourself. The program literally just passes the frequency and
duration to the Windows Beep(f, d) system call using 1 line of code.

I have considered upgrading to something that can play .wav or .mp3 files to allow for a variety of custom
sounds. Other people have done this with TARGET Scripts using the same technique used for wBeep.exe. See
this forum topic at SimHQ.com for further details on wBeep.exe and other ideas.

 http://simhq.com/forum/ubbthreads.php/topics/3852299

Conclusion on the Technical Details

Most of the rest of the TSW TARGET script is using common methods that are clearly explained in the TARGET
Script Editor Basics manual.

Support

I am posting these files in the following locations. Any questions/comments, I would prefer you post to the
UKTrainSim forums as it is a much older and well established forum, but I will check the Dovetail Games
forums as well of course.

UKTrainSim Forums:
http://forums.uktrainsim.com/viewtopic.php?f=386&t=149086

DoveTail Games TSW forums:
https://forums.dovetailgames.com/threads/thurstmaster-target-script-for-warthog-throttle-saitek-tq-
profile.3634

Or if all else fails, email me…
Michael Lohmeyer
mike@akhara.com

Other Works and Links of Interest

The UKTrainSim forum is where I found the mods by CobraOne and Havner and older works by other people
(see the Links below). Without their work, I would never have considered Train Simulator 20xx anything more
than a novelty. I took a gamble and bought TSW hoping I could make TARGET do what I need. Sadly,
extending this capability to other game controllers is a much bigger task. I would suggest starting with
AutoHotKeys as it can do it, but also tell Dovetail that you want game controller support. My TSW TARGET
Script has nothing to do with CobraOne and Havner’s work (no code in common), but I was inspired by their
desire to solve the problem.

TS2015 Raildriver Interface

CobraOne’s mod – a plugin/mod for Train Simulator 20xx that provides better RailDriver support than the
actual RailDriver software, as well as support for all DirectX game controllers including axis and button
mapping. Also includes an overlay that provides useful information for people that want to turn off the TS
20xx HUD information at the bottom of the screen.
http://forums.uktrainsim.com/viewtopic.php?f=361&t=139830

TrainSim Helper (Joystick/Overlay) release thread

Havner’s mod – a plugin/mod for Train Simulator 20xx that provides support for all DirectX game controllers
but including only axis mapping to TS 20xx. Button mapping is not provided, nor is the enhanced RailDriver
support provided. Also provides the overlay feature like in CobraOne’s mod. In fact, the overlay started here
and CobraOne adopted it into his mod. Havner and CobraOne have collaborated a great deal on these two
items and deserve huge recognition for their efforts.
http://forums.uktrainsim.com/viewtopic.php?f=361&t=139304

